Solving Fractions and Quadratics using the TiNSpire – Step by Step

Say your teacher has some fancy fractions to solve for you and you have a volleyball game , play practice and to prepare for the SAT next Saturday. So you take out your TiNspire CX CAS, launch the STEP BY STEP EQUATION SOLVER app from and get a quick lesson on how to solve those fractions…which turns out not too difficult after following the provided steps below:

We select option 5 :

  1. problem:

to get 5/14 . The trick is to multiply the given fractions by the product of their denominators (bottoms) to get a much easier equation to solve.

Here is another one:


It always works!

Quadratic equations can also be solved step by step. Here is one:


Even equations containing only variables can be solved (for x):

Cube root, other roots and radicals using the TiNSpire CX CAS

Say you need to find 3 radical 27 , that is to find the cube root of 27. Enter it as:

and it will display as

Similarly, the 4th root of 16 is entered :

and it is displayed as

And the 5th root of x is then entered as

to be displayed as

Nice and simple. In conclusion, radicals and roots can be dealt with using the handy root-function.

Projectile Motion with the TiNspire CX – Step by Step

Here is how to perform Projectile Motion using the TiNspire CX : Launch the Physics Made Easy from and go to the menu option 2: Kinematics – Linear and Rotational as shown below :

Next scroll down to “Projectile At Angle”. This menu option will do step by step analysis of the projectile given initial values such as Angle, Initial Velocity and Initial height.

Here is an example:

Now, if you are to find Initial Speed, Launch Angle etc just scroll further down in the menu as we have those scenarios covered too.

Differential Gleichungen Loesen – Schrittweise – mit dem Ti-Nspire CX CAS

Nehmen wir als Bespiel die homogene Differentialgleichung 2. Ordnung :

y” + 8y’ + 16y =0

Wir starten die TiNspire APP “Differentialgleichungen Leicht Gemacht” von und gehen im Menu zu Option 4: Homogene Differentialgleichung.

Und geben einfach die DGL oben ein.

Um eine partikulaere Loesung zu finden gibt man die Anfangswert Bedingungen unten ein:

So leicht ist es schrittweise Loesungen zu Differentialgleichungen zu bekommen. Man kann diese Loesung mit der von Symbol-Lab vergleichen unter :”%2B8y’%2B16y%3D0

NEW: Newton Method, Cholesky Decomposition, Jacobi Method, Simpson Rule and more using the TiNSpire CX

The Numerics Made Easy app at was updated to also solve the following concepts:

Secant Method to find zeros of a function
Jacobi Method to solve A*X=B
Cholesky Decomposition
Newton Method for Interpolation
Orthogonal Polynomials: Legendre , Hermite, Chebyshev and Leguerre
3-8 Simpson Rule
Newton Cotes

TiNspire : Volume of Solids of Revolution using Disk, Washer and Shell Methods

Computing the Volume of a Solid of Revolution using the TiNspire CX CAS can easily be done – step by step – using the Calculus Made Easy at .

Here is how.

Let’s start with the Disk Method. We just select that option in the menu:

Then this pops up :

Now, enter the given function in the top box and the given interval below. Automatically, the answer will show in the bottom with correct integral setup and the correct answer.

Similarly, when using the Washer Method for two functions we have:

Finally, the Shell method works the same way :

In conclusion, the just like all other Calculus topics finding the Volume of Solids of Revolution using the Disk , Washer and Shell Methods can be done easily using Calculus Made Easy at .

Tinspire CX : Black Scholes Pricing – Step by Step

The Black Scholes Option Pricing may be used to compute the fair market value of options, its computation requires some level of mathematical analysis. If you own a Tinspire CX you can easily compute the Black Scholes Put and Call pricing – step by step – using the Portfolio Made Easy app at . Just follow the steps below.

Select 1: Black Scholes : Call & Put Price

Enter the expiration date (in days), the stock price , its volatility (in %) , the strike price and the risk-free rate (in%)

Notice how the value are plugged into the Black Scholes formula. Notice how the 60 days are automatically divided by 365 days to turn the 60 days into a fraction. Additionally, the volatility and the risk-free rate re expressed as decimals.

After computing the parameters d1, d2 and the values of the normal distribution the Call price C is determined, here C = 49.4468


Lastly , the Put Price is computed, here P=37.937

The computation is easily accomplished simply by entering the given values, and it is always correct 😉


Ti-Nspire : Step by Step Definite Integrals

Computing definite Integrals using the 1. Fundamental Theorem of Calculus can be achieved using Calculus Made Easy at

Use option 8 in the INTEGRATION menu

Enter function f(x) and bounds [a,b] as shown below

View the Integration steps, here, the Power Rule is applied.

Lastly, plug the bounds into the above Antiderivative, subtract and that’s it!