Solve Separable 1. Order Differential Equation using the TiNspire CX

To solve a separable Differential Equation such as dy/dx + xy=0 or rewritten dy/dx = – x*y with initial condition y(0)=2 use the Differential Equation Made Easy app at , use menu option 1 3 (Separation of Variables) and enter as follows :

to finally get both the general and particular solutions.

Partial Derivatives using the TiNspire Cx CAs

Finding Partial Derivatives using the TiNspire can easily be done using Calculus Made Easy at as follows: In the Menu select Multivariable Calculus, then select Partial Derivatives and Gradient:

Next enter the given function using x and y as variables:

The two partial derivatives are highlighted , the 2. partial derivatives are found shown below.

You do have the option to evaluate the partial derivatives by entering x0 and y0 values in the 2. box as shown below :

Logarithms using the TiNspire CX

Say we have to logarithm base 6 of the cube root of 3 , here is how we enter it into the TiNspire CX CAS:

Upon pressing ENTER we will see the pretty format and the answer:

Let’s do another example: Logarithm base 6 of 1296 :

Pressing ENTER yields the solution 4 (since 1296 = 6^4) :

Here is exponential equation involving logarithm:

This is how it is entered:

Conveniently, log base 10 and exponential base 10 function cancel to get

Now we solve this function:


Lastly, evaluate

We enter as

to get

The reason for that clean answer is using the ln rules as follows:

and lastly

We have to solve the following logarithmic equation:

Enter as

log((r+15)^2,3) = 4 and lastly

solve( log((r+15)^2,3) = 4 , r)

which solves for r using the TiNspire cx .

By hand: log_3_(r+15)^2 = 4 calls for exponentiating both sides using base 3 which yields : (r+15)^2 = 3^4 = 81
Square rooting both sides : r+15 = plus or minus 9
Thus, r = -6 or r = -24 . Plug each into the original equation to verify the correctness.

Tangent Plane – Step by Step – using the TiNspire CX

QUESTION:  Find an equation of the tangent plane to the surface
z=3x^4+9y^4+7xy at the point (3,3,1035).

SOLUTION: Start Calculus Made Easy , go to the Multivariable Calculus in the menu.

There, enter as shown below :

The steps are shown in the box below: partial derivatives are computed and evaluated. And the function is evaluated at the given point . Thus, the Tangent Plane is derived. Additionally, a line normal to the plane and a normal vector are found.

Thus, finally

Cube root, other roots and radicals using the TiNSpire CX CAS

Say you need to find 3 radical 27 , that is to find the cube root of 27. Enter it as:

and it will display as

Similarly, the 4th root of 16 is entered :

and it is displayed as

And the 5th root of x is then entered as

to be displayed as

Nice and simple. In conclusion, radicals and roots can be dealt with using the handy root-function.

Projectile Motion with the TiNspire CX – Step by Step

Here is how to perform Projectile Motion using the TiNspire CX : Launch the Physics Made Easy from and go to the menu option 2: Kinematics – Linear and Rotational as shown below :

Next scroll down to “Projectile At Angle”. This menu option will do step by step analysis of the projectile given initial values such as Angle, Initial Velocity and Initial height.

Here is an example:

Now, if you are to find Initial Speed, Launch Angle etc just scroll further down in the menu as we have those scenarios covered too.

Differential Gleichungen Loesen – Schrittweise – mit dem Ti-Nspire CX CAS

Nehmen wir als Bespiel die homogene Differentialgleichung 2. Ordnung :

y” + 8y’ + 16y =0

Wir starten die TiNspire APP “Differentialgleichungen Leicht Gemacht” von und gehen im Menu zu Option 4: Homogene Differentialgleichung.

Und geben einfach die DGL oben ein.

Um eine partikulaere Loesung zu finden gibt man die Anfangswert Bedingungen unten ein:

So leicht ist es schrittweise Loesungen zu Differentialgleichungen zu bekommen. Man kann diese Loesung mit der von Symbol-Lab vergleichen unter :”%2B8y’%2B16y%3D0